
Generic feature extraction for text
categorization

(PhD-Sem3)

Gregor Weiss

University of Ljubljana
Faculty of Computer and Information Science

Tržaška cesta 25, Ljubljana, Slovenia
gregor.weiss@student.uni-lj.si

1 Introduction

Extracting more informative text features improves the performance of text min-
ing tasks, such as text categorization and sentiment analysis. Nevertheless re-
searchers usually focus on applying machine learning to the main part of their
problem and just preprocess texts with hand-engineered linguistic and custom
methods, that are based on background knowledge about a given language, do-
main, and specific task. To improve and automate the initial preprocessing phase
we propose a generic feature extraction method inspired by genetic programming
(GP). Beginning almost without any natural language processing (NLP) knowl-
edge it will iteratively try to define and connect primitive features and multiple
layers of evolved blocks such that more complex and informative features get
extracted.

2 Related work review

2.1 Text mining

Increasing amounts of unstructured textual data created a tremendous need for
going beyond traditional information retrieval and towards designing algorithms
for analyzing text and discovering interesting patterns. This broad and interdis-
ciplinary area related to text analysis is called text mining[1]. Although a lot
has already been accomplished, future research directions will need to work on
scalable, robust, and domain-independent methods for language processing and
context-aware analysis. Improving data representation with our generic feature
extraction method might just be the way towards accomplishing these needs.

A traditional framework for text mining[2][3] begins with retrieving and
preprocessing an unstructured text corpus (e.g. stemming, lemmatization, stop
words removal) that is than transformed into a document representation more
suitable for computer’s abilities (e.g. bag-of-words vectors, tf-idf weighting, part-
of-speech tagging, hand-engineered feature extractors). These preprocessing meth-
ods are based on background knowledge about a given language, domain, and



2 Gregor Weiss

specific task. Afterwards the knowledge discovery and text analysis methods are
applied to automatically extract previously unknown information and solve the
given task. Our research work is positioned in the preprocessing phase target-
ing feature-vector representations that are traditionally based on a lot of NLP
knowledge. We believe that with enough data a GP approach is capable of ex-
tracting features as good or even better than traditional methods, but almost
without any special NLP knowledge.

Automated text categorization[4][5] usually works by using a generic induc-
tive process (learning algorithm) that builds a classifier by learning the character-
istics of individual categories from a set of preclassified documents. The process
is based on high dimensional feature-vector representations of text documents
that has been shown to work well with Support Vector Machines (SVM)[6]. It
is also one of the most researched and basic problems in text mining and can
be used in many applications, such as automatic indexing, news filtering, spam
detection, document routing, authorship attribution, sentiment analysis, objec-
tivity estimation... As such we decided to use it as our target task for which we
will try to improve the performance.

2.2 Feature extraction without special background knowledge

The success of machine learning algorithms generally depends on data represen-
tation, and we hypothesize that this is because different features can filter and
combine different explanatory factors behind the data. Although features with
specific domain knowledge work well enough, having only generic prior knowl-
edge can be used to help design more powerful representations[7]. Because of its
complexity representation learning is mainly being explored in the area of deep
neural network architectures. Our feature extraction method is similar to their
approach in respect of almost not using any NLP knowledge, but it differs in the
way how vector representations are learned.

Although text mining without using any special background knowledge seems
like a natural goal, only the deep learning community has recently approached it.
It has been applied to various NLP tasks with surprising performance[8], but not
yet to text categorization task that we plan to focus on. The approaches nearest
our text feature extraction deal with representing words in a lower-dimensional
distributed vector space that exhibits meaningful word similarity relations[9].

2.3 Genetic programming

Genetic programming (GP)[10][11] is a general technique for inducing a com-
puter program that can produce the desired behavior for a given set of situa-
tions, consequently solving problems in a wide range of disciplines. If we can
reformulate a problem in terms of program induction (define genetic operators,
a heuristic fitness measure, and primitive building blocks) it would eventually
evolve good programs, same as biological evolution evolves adapted organisms.
The text feature extraction process in its core is just executing a carefully pre-
pared function that transforms a collection of unstructured text documents into



Generic feature extraction for text categorization (PhD-Sem3) 3

a feature-vector representation. This means that informative feature extraction
methods for any text mining task could also be evolved without the need of man-
ually incorporating NLP knowledge into them. Our generic feature extraction
method is built around this idea that has to the best of our knowledge not yet
been tried out.

In GP programs are traditionally represented as tree structures of various
sizes that are inappropriate and less efficient. Cartesian genetic programming
(CGP)[12] on the other hand represents programs (their genotypes) as a list of
integers that are mapped to directed graphs on a fixed number of input, com-
putation, and output nodes. Although some genes may not have an effect and
doesn’t make sense to compute them, such graph structures are more general
than trees and can evolve considerably more efficient than standard GP meth-
ods. Our idea of having a set of primitive features that are combined into more
complex and informative ones through multiple processing layers, can be natu-
rally expressed in the form of directed graphs. Nevertheless basic CGP may not
be sufficient, because the ability to express loops will probably be needed.

One of the key problems of genetic programming or program induction in
general is the enormous size of the problem space. A way to accelerate the
evaluation of induced programs is to parallelize the work by using multiple CPU
or better GPU cores[13]. It turns out that the CGP approach we are planning
on using can be represented as a classic genetic algorithm[14] and consequently
accelerated on such hardware.

2.4 Fitness measures

The major problem of traditional text categorization is the high dimensionality of
the feature space. But if we look at the feature extraction phase from the genetic
programming approach, it becomes much worse. The feature space consists of all
features that all possible feature extraction programs can produce. Even if we
somehow limit the structure of induced programs, it is still enormous. The only
way to make it feasible is by choosing a good heuristic fitness function for the
GP method[11]. Because we are working on text categorization it would make
sense to base our fitness function on a feature selection or scoring measure. Even
though general feature selection methods exist, measures constructed with text
categorization task in mind can in our opinion perform better.

It has been shown that a feature selection measure called bi-normal sepa-
ration (BNS) outperforms general ones by a substantial margin in most text
categorization problems[15]. It is defined as the difference between normal dis-
tribution’s inverse cumulative probability functions of true and false positive
rates. Its performance and generality make it a good candidate for our fitness
function.

A text feature selection approach based on Gini index theory[16] does not
contain any specific NLP knowledge and has been shown to be effective with
different kinds of classifiers (SVM, kNN, fkNN). Therefore it is also a suitable
heuristic for guiding our GP algorithm.



4 Gregor Weiss

Two more feature scoring metrics have been shown to perform better for text
categorization when used with the Naive Bayes learning algorithm[17]. One is a
generalization of the odds ratio to multi-class problems, and the other a class
discriminating measure. Although the experimental evidence is poor, they might
be considered as a candidate for our fitness function.

A general and well-known feature scoring method called ReliefF[18] is based
on estimating the quality of features according to how well their values distin-
guish between instances that are near to each other. Returned scores represent
how relevant individual features are, while neglecting the effects of interactions
between them (could be a useful property). High dimensionality of the feature
space will probably cause problems, therefore modifications like sampling feature
subsets will need to be implemented in order to use it.

2.5 Primitive building blocks and features

A typical document representation is the bag-of-words representation[4][1] where
we treat individual words as terms and simply count their occurrences. Although
it disregards the word order and is sensitive to spelling and grammatical errors,
it surprisingly still contains enough information to be widely used in text cat-
egorization and similar tasks. Because of its simplicity our feature extraction
method should be capable of building upon primitive features in this form.

A simple and commonly used generalization of the above representation is in
the form of character- of word-based n-grams[19]. Here occurrence frequencies
of all n consecutive characters or words that appear in the corpus are counted.
More general representations, such as this, are desirable for our method, so this
is one of the major candidates for supported primitive features.

It may seem that just extending the bag-of-words representation to include
syntactic and semantic relationships between words (phrases, synonyms, hyper-
nyms) would be a huge improvement[20][21]. Unfortunately without a complex
voting technique the performance of learners does not improve in comparison to
word-based representation. Nevertheless operators in our algorithm should be
capable of expressing such concepts.

Two basic probabilistic vector representations of text documents arise natu-
rally[22]. One is the the multivariate Bernoulli model where a binary vector sim-
ply indicates the presence or absence of feature terms. The other is a multinomial
model where occurrence frequencies are retained. For expressing such concepts
in our method, it must support boolean-, integer-, and real-valued variables.

The major problem of text categorization is the high dimensionality of the
feature space. Some linguistic techniques for feature reduction are therefore com-
monly applied during the preprocessing phase. Stop-word removal is the process
of filtering out the words that are generally regarded as not carrying any special
meaning, but can cause learning issues due to their high frequency[23]. Stem-
ming is a technique for reducing a word to its base or root form, consequently
reducing the dimensionality by mapping related words to the same stem[24][25].
A more complex approach called lemmatization is determining the lemma of



Generic feature extraction for text categorization (PhD-Sem3) 5

a given word where different normalization rules are applied depending on the
part-of-speech role of a word[26].

Previously mentioned text representations based on counting occurrences do
not reflect how important a word is to a document, because some words appear
more frequently in general. Therefore the tf-idf weighting scheme[27], short for
term frequency-inverse document frequency, is often used in text mining and by
search engines to normalize the effects of words. Because of its intuitiveness our
GP approach must have operators and data available to construct such weighting
schemes.

Latent semantic indexing[28] tries to identify semantics and associations be-
tween terms contained in text documents by using a mathematical technique
called singular value decomposition (SVD). It is capable of correlating semanti-
cally related terms, thus overcoming the problems of polysemy (one word having
many distinct meanings) and synonymy (different words having same meaning).
Our method should also be capable of dealing with these situations of natural
language, so special functions used as building blocks should also support matrix
manipulations, such as SVD.

Another approach for overcoming polysemy and synonymy is the use of multi-
words that should capture the contextual information of individual words[29]. It
can be accomplished using statistical methods based on mutual information or
linguistic methods with grammatical and syntactical rules of phrases. To add this
functionality to our method it seems that having a special function to compute
entropies and some basic logic operators would suffice.

From the perspective of the sentiment analysis problems[30][31] we distin-
guish three levels of analysis (document, sentence, and entity or aspect level).
We will primarily focus on the document level that is most similar to the tradi-
tional text categorization task. Not surprisingly, the most important indicators
of sentiments are sentiment words whose influences are aggregated. This concept
can be represented by looking up words in dictionaries, so our method should be
capable of building and using such data structures. Complications in sentiment
analysis arise because words can have opposite meaning in different domains,
they can relate to different entities or aspects, opinions can be expressed even
without those words, additionally sarcasm and figurative speech are common.
These can be represented by our method as logical rules or patterns of opinions
and sentiment shifting operators.

One of the text mining fields is called information extraction[32] that deals
with extracting structures (e.g. entities, relationships, tags) by using various
methods (e.g. manually coded or trained from examples). Although the task
differs from the text categorization, we believe that features for rule-based or
statistical methods presented in the survey[32] could be used as primitive features
that our algorithm will iteratively try to define and combine until more complex
and informative ones are induced. For example features can be in the form of
looking up in dictionaries, matching patterns of words, measuring similarity and
length of segments, applying grammars, ...



6 Gregor Weiss

3 Conclusion

In our opinion the research goal of preprocessing text almost without any NLP
or specific knowledge is an important step towards more robust and domain-
independent processing of text. We quickly proposed a generic feature extrac-
tion method inspired by genetic programming, presented its major parts, and
reviewed what has been done and could possibly be used.



Generic feature extraction for text categorization (PhD-Sem3) 7

References

1. C. C. Aggarwal and C. X. Zhai, Mining Text Data, vol. 4. Boston, MA: Springer
US, 2012.

2. V. Gupta and G. S. Lehal, “A survey of text mining techniques and applications,”
J. Emerg. Technol. Web Intell., vol. 1, no. 1, pp. 60–76, 2009.

3. M. K. Dalal and M. A. Zaveri, “Automatic Text Classification: A Technical Re-
view,” Int. J. Comput. Appl., vol. 28, pp. 37–40, Aug. 2011.

4. F. Sebastiani, “Machine Learning in Automated Text Categorization,” ACM Com-
put. Surv., vol. 34, pp. 1–47, Oct. 2002.

5. F. Sebastiani, “Text Categorization,” in Text Min. its Appl. (A. Zanasi, ed.),
pp. 109–129, WIT Press, 2005.

6. T. Joachims, “Text categorization with support vector machines: Learning with
many relevant features,” in Proc. Eur. Conf. Mach. Learn. (C. Nédellec and
C. Rouveirol, eds.), vol. 1398, pp. 137–142, Springer Berlin Heidelberg, 1998.

7. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review and
new perspectives.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, pp. 1798–828,
Aug. 2013.

8. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural Language Processing (almost) from Scratch,” J. Mach. Learn. Res.,
vol. 12, pp. 2493–2537, 2011.

9. T. Mikolov, G. Corrado, K. Chen, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” in Proc. Int. Conf. Learn. Represent. (ICLR
2013), pp. 1–12, 2013.

10. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

11. M. L. Wong and K. S. Leung, “Evolutionary Program Induction Directed by Logic
Grammars,” Evol. Comput., vol. 5, pp. 143–180, June 1997.

12. J. F. Miller and P. Thomson, “Cartesian Genetic Programming,” Nat. Comput.
Ser., vol. 43, pp. 17–34, 2011.

13. S. Harding and W. Banzhaf, “Fast Genetic Programming on GPUs,” in Proc. 10th
Eur. Conf. Genet. Program. (M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, and
A. I. Esparcia-Alcázar, eds.), vol. 4445 of Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 90–101, Springer Berlin Heidelberg, 2007.

14. M. Wineberg and F. Oppacher, “A Representation Scheme to Perform Program
Induction in a Canonical Genetic Algorithm,” in Parallel Probl. Solving from Na-
ture—PPSN III, pp. 291–301, Springer Berlin Heidelberg, 1994.

15. G. Forman, “An Extensive Empirical Study of Feature Selection Metrics for Text
Classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305, 2003.

16. W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, “A novel feature
selection algorithm for text categorization,” Expert Syst. Appl., vol. 33, pp. 1–5,
July 2007.

17. J. Chen, H. Huang, S. Tian, and Y. Qu, “Feature selection for text classification
with Naive Bayes,” Expert Syst. Appl., vol. 36, no. 3, pp. 5432–5435, 2009.

18. M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis of Reli-
efF and RReliefF,” Mach. Learn. J., vol. 53, no. 1-2, pp. 23–69, 2003.

19. W. B. Cavnar and J. M. Trenkle, “N-Gram-Based Text Categorization,” in Proc.
SDAIR-94, 3rd Annu. Symp. Doc. Anal. Inf. Retr., pp. 161–175, 1994.

20. D. D. Lewis, “Feature selection and feature extraction for text categorization,”
in Proc. Work. Speech Nat. Lang. - HLT ’91, (Morristown, NJ, USA), p. 212,
Association for Computational Linguistics, 1992.



8 Gregor Weiss

21. S. Scott and S. Matwin, “Feature engineering for text classification,” in Proc.
ICML-99, 16th Int. Conf. Mach. Learn., vol. 99, pp. 379–388, 1999.

22. S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng, “Some Effective Techniques
for Naive Bayes Text Classification,” IEEE Trans. Knowl. Data Eng., vol. 18,
pp. 1457–1466, Nov. 2006.

23. W. Zhang, T. Yoshida, and X. Tang, “Text classification based on multi-word with
support vector machine,” Knowledge-Based Syst., vol. 21, pp. 879–886, Dec. 2008.

24. M. Porter, “An algorithm for suffix stripping,” Progr. Electron. Libr. Inf. Syst.,
vol. 14, no. 3, pp. 130–137, 1980.

25. W. B. Frakes, “Stemming Algorithms,” in Inf. Retr. Boston. (W. B. Frakes and
R. Baeza-Yates, eds.), pp. 131–160, Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1992.

26. J. Plisson, N. Lavrac, and D. Mladenic, “A Rule based Approach to Word Lemma-
tization,” in Proc. 7th Int. multi-conference Inf. Soc., (Ljubljana), pp. 83–86, Jožef
Stefan Institute, 2004.

27. A. Aizawa, “An information-theoretic perspective of tf-idf measures,” Inf. Process.
Manag., vol. 39, pp. 45–65, 2003.

28. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41, pp. 391–407,
Sept. 1990.

29. W. Zhang, T. Yoshida, and X. Tang, “A comparative study of TF-IDF, LSI and
multi-words for text classification,” Expert Syst. Appl., vol. 38, pp. 2758–2765,
2011.

30. B. Liu, Sentiment Analysis and Opinion Mining, vol. 5. Morgan & Claypool Pub-
lishers, May 2012.

31. G. Vinodhini and R. M. Chandrasekaran, “Sentiment Analysis and Opinion Min-
ing: A Survey,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 2, no. 6, pp. 282–
292, 2012.

32. S. Sarawagi, “Information Extraction,” Found. Trends Databases, vol. 1, no. 3,
pp. 261–377, 2008.


